Рабочая программа по математике для учащихся 1-4 классов по программе "Начальная школа 21 века"
Рабочая программа по математике по программе "Начальная школа 21 века"
Пояснительная записка I. Планируемые результаты освоения учебного предмета
Данная программа обеспечивает формирование универсальных учебных действий, а также достижение необходимых предметных результатов освоения курса, заложенных в ФГОС НОО. Для обучающихся 1 класса Личностными результатами обучающихся являются:
• готовность ученика целенаправленно использовать знания в учении и в повседневной жизни для исследования математической сущности предмета (явления, события, факта);
• способность характеризовать собственные знания по предмету, формулировать вопросы, устанавливать, какие из предложенных математических задач могут быть им успешно решены;
• познавательный интерес к математической науке.
Метапредметными результатами обучающихся являются:
• с уроками грамоты: введение школьника в языковую и математическую действительность; формирование умений учиться, а так же навыков письма и счета;
• с уроками окружающего мира: формирование учебно-интеллектуальных умений: классификация обобщение, анализ; объединение объектов в группы; выявление сходства и различия; установление причинных связей; высказывание доказательств проведенной классификации; ориентировка на поиск необходимого (нового способа действия);
• с уроками труда: перенос полученных знаний по математике в разнообразную самостоятельную трудовую деятельность;
• способность анализировать учебную ситуацию с точки зрения математических характеристик, устанавливать количественные и пространственные отношения объектов окружающего мира, строить алгоритм поиска необходимой информации, определять логику решения практической и учебной задач;
• умение моделировать – решать учебные задачи с помощью знаков (символов), планировать, контролировать и корректировать ход решения учебной задачи.
Предметными результатами обучающихся являются:
• освоенные знания о числах и величинах, арифметических действиях, текстовых задачах, геометрических фигурах;
• умения выбирать и использовать в ходе решения изученные алгоритмы, свойства арифметических действий, способы нахождения величин, приемы решения задач;
• умения использовать знаково-символические средства, в том числе модели и схемы, таблицы, диаграммы для решения математических задач.
У семилетнего ребенка развито зрительное и пространственное восприятие, зрительно – моторная координация, общая и мелкая моторика, наглядно – образное мышление, основы логического мышления (операции, классификации, нахождение признака, по которому произведена классификация), определенный уровень дочисловых представлений и уровень общего (деятельностного, личностного) развития ребенка.
Планируемые результаты обучения К концу обучения в 1 классе ученик научится:
называть:
• предмет, расположенный левее (правее), выше (ниже) данного предмета, над (под, за) данным предметом, между двумя предметами;
• натуральные числа от 1 до 20 в прямом и в обратном порядке, следующее (предыдущее) при счёте число;
• число, большее (меньшее) данного числа (на несколько единиц);
• геометрическую фигуру (точку, отрезок, треугольник, квадрат, пятиугольник, куб, шар);
различать:
• число и цифру;
• знаки арифметических действий;
• круг и шар, квадрат и куб;
• многоугольники по числу сторон (углов);
• направления движения (слева направо, справа налево, сверху вниз, снизу вверх);
читать:
• числа в пределах 20, записанные цифрами;
• записи вида: 3 + 2 = 5, 6 – 4 = 2, 5 . 2 = 10, 9 : 3 = 3;
сравнивать:
• предметы с целью выявления в них сходства и различий;
• предметы по размерам (больше, меньше);
• два числа («больше», «меньше», «больше на…», «меньше на…»);
• данные значения длины;
• отрезки по длине;
воспроизводить:
• результаты табличного сложения любых однозначных чисел;
• результаты табличного вычитания однозначных чисел;
• способ решения задачи в вопросно-ответной форме;
распознавать:
• геометрические фигуры;
моделировать:
• отношения «больше», «меньше», «больше на…», «меньше на…» с использованием фишек, геометрических схем (графов) с цветными стрелками;
• ситуации, иллюстрирующие арифметические действия (сложение, вычитание, умножение, деление);
• ситуацию, описанную текстом арифметической задачи, с помощью фишек или схематического рисунка;
характеризовать:
• расположение предметов на плоскости и в пространстве;
• расположение чисел на шкале линейки (левее, правее, между);
• результаты сравнения чисел словами «больше» или «меньше»;
• предъявленную геометрическую фигуру (форма, размеры);
• расположение предметов или числовых данных в таблице: верхняя (средняя, нижняя) строка, левый (правый, средний) столбец;
анализировать:
• текст арифметической задачи: выделять условие и вопрос, данные и искомые числа (величины);
• предложенные варианты решения задачи с целью выбора верного или оптимального решения;
классифицировать:
• распределять элементы множеств на группы по заданному признаку;
упорядочивать:
• предметы (по высоте, длине, ширине);
• отрезки (в соответствии с их длинами);
• числа (в порядке увеличения или уменьшения);
конструировать:
• алгоритм решения задачи;
• несложные задачи с заданной сюжетной ситуацией (по рисунку, схеме);
контролировать:
• свою деятельность (обнаруживать и исправлять допущенные ошибки);
оценивать:
• расстояние между точками, длину предмета или отрезка на глаз;
• предъявленное готовое решение учебной задачи (верно, неверно);
решать учебные и практические задачи:
• пересчитывать предметы, выражать числами получаемые результаты;
• записывать цифрами числа от 1 до 20, число нуль;
• решать простые текстовые арифметические задачи (в одно действие);
• измерять длину отрезка с помощью линейки;
• изображать отрезок заданной длины;
• отмечать на бумаге точку, проводить линию по линейке;
• выполнять вычисления (в том числе вычислять значения выражений, содержащих скобки);
• ориентироваться в таблице: выбирать необходимую для решения задачи информацию. К концу обучения в 1 классе ученик получит возможность научиться:
сравнивать:
разные приёмы вычислений с целью выявления наиболее удобного приёма;
воспроизводить:
способ решения арифметической задачи или любой другой учебной задачи в виде связного устного рассказа;
обосновывать:
приёмы вычислений на основе использования свойств арифметических действий;
контролировать деятельность:
осуществлять взаимопроверку выполненного задания при работе в парах;
решать учебные и практические задачи:
• преобразовывать текст задачи в соответствии с предложенными условиями;
• использовать изученные свойства арифметических действий при вычислениях;
• выделять на сложном рисунке фигуру указанной формы (отрезок, треугольник и др.), пересчитывать число таких фигур;
• составлять фигуры из частей;
• разбивать данную фигуру на части в соответствии с заданными требованиями;
• изображать на бумаге треугольник с помощью линейки;
• находить и показывать на рисунках пары симметричных относительно осей симметрии точек и других фигур (их частей);
• определять, имеет ли данная фигура ось симметрии и число осей;
• представлять заданную информацию в виде таблицы;
• выбирать из математического текста необходимую информацию для ответа на поставленный вопрос.
Для обучающихся 2 класса Личностными результатами обучения учащихся являются:
• умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
• готовность и способность к саморазвитию;
• способность характеризовать собственные математические знания и умения;
• заинтересованность в расширении и углублении получаемых математических знаний;
• готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;
• высказывать собственные суждения и давать им обоснование;
Метапредметными результатами обучения являются:
• овладение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
• принятие учебной задачи, поиск и нахождение способов ее решения;
• овладение планированием, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;
• выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);
• создание моделей изучаемых объектов с использованием знаково-символических средств;
• понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;
• активное использование математической речи для решения разнообразных коммуникативных задач;
• готовность слушать собеседника, вести диалог;
Предметными результатами учащихся являются:
• овладение основами математической речи;
• умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач;
• овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;
Планируемые результаты обучения К концу обучения во 2 классе ученик научится:
называть:
• натуральные числа от 20 до 100 в прямом и в обратном порядке, следующее (предыдущее) при счёте число;
• число, большее или меньшее данного числа в несколько раз;
• единицы длины, площади;
• одну или несколько долей данного числа и числа по его доле;
• компоненты арифметических действий (слагаемое, сумма, уменьшаемое, вычитаемое, разность, множитель, произведение, делимое, делитель, частное);
• геометрическую фигуру (многоугольник, угол, прямоугольник, квадрат, окружность);
сравнивать:
• числа в пределах 100;
• числа в кратном отношении (во сколько раз одно число больше или меньше другого);
• длины отрезков;
различать:
отношения «больше в…» и «больше на…», «меньше в …» и «меньше на…»;
• компоненты арифметических действий;
• числовое выражение и его значение;
• российские монеты, купюры разных достоинств;
• прямые и непрямые углы;
• периметр и площадь прямоугольника;
• окружность и круг;
читать:
• числа в пределах 100, записанные цифрами;
• записи вида: 5 . 2 = 10, 12 : 4 = 3;
воспроизводить:
• результаты табличных случаев умножения однозначных чисел и соответствующих случаев деления;
• соотношения между единицами длины: 1 м = 100 см, 1 м = 10 дм;
приводить примеры:
• однозначных и двузначных чисел;
• числовых выражений;
моделировать:
• десятичный состав двузначного числа;
• алгоритмы сложения и вычитания двузначных чисел;
• ситуацию, представленную в тексте арифметической задачи, в виде схемы, рисунка;
распознавать:
геометрические фигуры (многоугольники, окружность, прямоугольник, угол);
упорядочивать:
числа в пределах 100 в порядке увеличения или уменьшения;
характеризовать:
• числовое выражение (название, как составлено);
• многоугольник (название, число углов, сторон, вершин);
анализировать:
• текст учебной задачи с целью поиска алгоритма ее решения;
• готовые решения задач с целью выбора верного решения, рационального способа решения;
классифицировать:
• углы (прямые, непрямые);
• числа в пределах 100 (однозначные, двузначные);
конструировать:
• тексты несложных арифметических задач;
• алгоритм решения составной арифметической задачи;
контролировать:
свою деятельность (находить и исправлять ошибки);
оценивать:
готовое решение учебной задачи (верно, неверно);
решать учебные и практические задачи:
записывать цифрами двузначные числа;
• решать составные арифметические задачи в два действия в различных комбинациях;
• вычислять сумму и разность чисел в пределах 100, используя изученные устные и письменные приёмы вычислений;
• вычислять значения простых и составных числовых выражений;
• вычислять периметр и площадь прямоугольника (квадрата);
• строить окружность с помощью циркуля;
• выбирать из таблицы необходимую информацию для решения учебной задачи;
• заполнять таблицы, имея некоторый банк данных.
К концу обучения во 2 классе ученик получит возможность научиться:
формулировать:
• свойства умножения и деления;
• определения прямоугольника (квадрата);
• свойства прямоугольника (квадрата);
называть:
• вершины и стороны угла, обозначенные латинскими буквами;
• элементы многоугольника (вершины, стороны, углы);
• центр и радиус окружности;
• координаты точек, отмеченных на числовом луче;
• читать:
• обозначения луча, угла, многоугольника;
различать:
луч и отрезок;
характеризовать:
• расположение чисел на числовом луче;
• взаимное расположение фигур на плоскости (пересекаются, не пересекаются, имеют общую точку (общие точки);
решать учебные и практические задачи:
• выбирать единицу длины при выполнении измерений;
• обосновывать выбор арифметических действий для решения задач;
• указывать на рисунке все оси симметрии прямоугольника (квадрата);
• изображать на бумаге многоугольник с помощью линейки или от руки;
• составлять несложные числовые выражения;
• выполнять несложные устные вычисления в пределах 100.
Для обучающихся 3 класса Личностными результатами обучения учащихся являются:
• самостоятельность мышления;
• умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
• готовность и способность к саморазвитию;
• сформированность мотивации к обучению;
• способность характеризовать и оценивать собственные математические знания и умения;
• заинтересованность в расширении и углублении получаемых математических знаний;
• готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в повседневной жизни;
• способность преодолевать трудности, доводить начатую работу до ее завершения;
• способность к самоорганизованности;
• способность высказывать собственные суждения и давать им обоснование;
• владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).
Метапредметными результатами обучения являются:
• владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
• понимание и принятие учебной задачи, поиск и нахождение способов ее решения;
• планирование, контроль и оценка учебных действий;
• определение наиболее эффективного способа достижения результата;
• выполнение учебных действий в разных формах (практические работы, работа с моделями и др.).
Предметными результатами учащихся являются:
• освоение знания о числах и величинах, арифметических действиях, текстовых задачах, геометрических фигурах;
• умения выбирать и использовать в ходе решения изученные алгоритмы, свойства арифметических действий, способы нахождения величин, приёмы решения задач;
• умения использовать знаково-символические средства, в том числе модели и схемы, таблицы, диаграммы для решения математических задач.
Планируемые результаты обучения К концу обучения в 3 классе ученик научится:
называть:
• любое следующее (предыдущее) при счете число в пределах 1000, любой отрезок натурального ряда от 100 до 1000 в прямом и обратном порядке;
• компоненты действия деления с остатком;
• единицы массы, времени, длины;
• геометрическую фигуру (ломаная);
сравнивать:
• числа в пределах 1000;
• значения величин, выраженных в одинаковых или разных единицах;
различать:
• знаки > и <;
• числовые равенства и неравенства;
читать:
записи вида: 120<365, 900>850;
воспроизводить:
• соотношения между единицами массы, длины, времени;
• устные и письменные алгоритмы арифметических действий в пределах 1000;
приводить примеры:
числовых равенств и неравенств;
моделировать:
• ситуацию, представленную в тексте арифметической задачи, в виде схемы (графа), таблицы, рисунка;
• способ деления с остатком с помощью фишек;
упорядочивать:
• натуральные числа в пределах 1000;
• значения величин, выраженных в одинаковых или разных единицах;
анализировать:
• структуру числового выражения;
• текст арифметической (в том числе логической) задачи;
классифицировать:
числа в пределах 1000 (однозначные, двузначные, трехзначные);
конструировать:
план решения составной арифметической (в том числе логической) задачи;
контролировать:
свою деятельность (проверять правильность письменных вычислений с натуральными числами в пределах 1000), находить и исправлять ошибки;
решать учебные и практические задачи:
• читать и записывать цифрами любое трехзначное число;
• читать и составлять несложные числовые выражения;
• выполнять несложные устные вычисления в пределах 1000;
• вычислять сумму и разность чисел в пределах 1000, выполнять умножение и деление на однозначное и на двузначное число, используя письменные алгоритмы вычислений;
• выполнять деление с остатком;
• определять время по часам;
• изображать ломаные линии разных видов;
• вычислять значения числовых выражений, содержащих 2-3 действия (со скобками и без скобок);
• решать текстовые арифметические задачи в три действия. К концу обучения в 3 классе ученик получит возможность научиться:
формулировать:
• сочетательное свойство умножения;
• распределительное свойство умножения относительно сложения (вычитания);
читать:
обозначения прямой, ломаной;
приводить примеры:
• высказываний и предложений, не являющихся высказываниями;
• верных и неверных высказываний;
различать:
• числовое и буквенное выражения;
• прямую и луч, прямую и отрезок;
• замкнутую и незамкнутую ломаную линии;
характеризовать:
• ломаную линию (вид, число вершин, звеньев);
• взаимное расположение лучей, отрезков, прямых на плоскости;
конструировать:
буквенное выражение, в том числе для решения задач с буквенными данными;
воспроизводить:
способы деления окружности на 2, 4, 6 и 8 равных частей;
решать учебные и практические задачи:
• вычислять значения буквенных выражений при заданных числовых значениях входящих в них букв;
• изображать прямую и ломаную линии с помощью линейки;
• проводить прямую через одну и через две точки;
• строить на бумаге в клетку точку, отрезок, луч, прямую, ломаную, симметричные данным фигурам (точке, отрезку, лучу, прямой, ломаной).
Для обучающихся 4 класса
Личностными результатами обучения учащихся являются:
• самостоятельность мышления;
• умение устанавливать, с какими учебными задачами ученик может самостоятельно успешно справиться;
• готовность и способность к саморазвитию;
• сформированность мотивации к обучению;
• способность характеризовать и оценивать собственные математические знания и умения;
• заинтересованность в расширении и углублении получаемых математических знаний;
• готовность использовать получаемую математическую подготовку в учебной деятельности и при решении практических задач, возникающих в
• повседневной жизни;
• способность преодолевать трудности, доводить начатую работу до ее завершения;
• способность к самоорганизованности;
• способность высказывать собственные суждения и давать им обоснование;
• владение коммуникативными умениями с целью реализации возможностей успешного сотрудничества с учителем и учащимися класса (при групповой работе, работе в парах, в коллективном обсуждении математических проблем).
Метапредметными результатами обучения являются:
• владение основными методами познания окружающего мира (наблюдение, сравнение, анализ, синтез, обобщение, моделирование);
• понимание и принятие учебной задачи, поиск и нахождение способов ее решения;
• планирование, контроль и оценка учебных действий; определение наиболее эффективного способа достижения результата;
• выполнение учебных действий в разных формах (практические работы, работа с моделями и др.);
• создание моделей изучаемых объектов с использованием знаково-символических средств;
• понимание причины неуспешной учебной деятельности и способность конструктивно действовать в условиях неуспеха;
• адекватное оценивание результатов своей деятельности;
• активное использование математической речи для решения разнообразных коммуникативных задач;
• готовность слушать собеседника, вести диалог;
• умение работать в информационной среде.
Предметными результатами учащихся на выходе из начальной школы являются:
• овладение основами логического и алгоритмического мышления, пространственного воображения и математической речи;
• умение применять полученные математические знания для решения учебно-познавательных и учебно-практических задач, а также использовать эти знания для описания и объяснения различных процессов и явлений окружающего мира, оценки их количественных и пространственных отношений;
• овладение устными и письменными алгоритмами выполнения арифметических действий с целыми неотрицательными числами, умениями вычислять значения числовых выражений, решать текстовые задачи, измерять наиболее распространенные в практике величины, распознавать и изображать простейшие геометрические фигуры;
• умение работать в информационном поле (таблицы, схемы, диаграммы, графики, последовательности, цепочки, совокупности);
• представлять, анализировать и интерпретировать данные.
Планируемые результаты обучения К концу обучения в 4 классе ученик научится:
называть:
• любое следующее (предыдущее) при счёте многозначное число, любой отрезок натурального ряда чисел в прямом и в обратном порядке;
• классы и разряды многозначного числа;
• единицы величин: длины, массы, скорости, времени;
• пространственную фигуру, изображённую на чертеже или представленную в виде модели (многогранник, прямоугольный параллелепипед (куб), пирамида, конус, цилиндр);
сравнивать:
• многозначные числа;
• значения величин, выраженных в одинаковых единицах;
различать:
цилиндр и конус, прямоугольный параллелепипед и пирамиду;
читать:
• любое многозначное число;
• значения величин;
• информацию, представленную в таблицах, на диаграммах;
воспроизводить:
• устные приёмы сложения, вычитания, умножения, деления в случаях, сводимых к действиям в пределах сотни;
• письменные алгоритмы выполнения арифметических действий с многозначными числами;
• способы вычисления неизвестных компонентов арифметических действий (слагаемого, множителя, уменьшаемого, вычитаемого, делимого, делителя);
• способы построения отрезка, прямоугольника, равных данным, с помощью циркуля и линейки;
моделировать:
разные виды совместного движения двух тел при решении задач на движение в одном направлении, в противоположных направлениях;
упорядочивать:
• многозначные числа, располагая их в порядке увеличения (уменьшения);
• значения величин, выраженных в одинаковых единицах;
анализировать:
• структуру составного числового выражения;
• характер движения, представленного в тексте арифметической задачи;
конструировать:
• алгоритм решения составной арифметической задачи;
• составные высказывания с помощью логических свойств-связок «и», «или», «если…, то…», «неверно, что…»;
контролировать:
• свою деятельность: проверять правильность вычислений с многозначными числами, используя изученные приёмы;
• решать учебные и практические задачи:
• записывать цифрами любое многозначное число в пределах класса миллионов;
• вычислять значения числовых выражений, содержащих не более шести арифметических действий;
• решать арифметические задачи, связанные с движением (в том числе задачи на совместное движение двух тел);
• формулировать свойства арифметических действий и применять их при вычислениях;
• вычислять неизвестные компоненты арифметических действий.
К концу обучения в 4 классе ученик получит возможность научиться:
называть:
координаты точек, отмеченных в координатном углу;
сравнивать:
величины, выраженные в разных единицах;
различать:
числовое и буквенное равенства;
виды углов и виды треугольников;
понятия «несколько решений» и «несколько способов решения» (задачи);
воспроизводить:
способы деления отрезка на равные части с помощью циркуля и линейки;
приводить примеры:
истинных и ложных высказываний;
оценивать:
точность измерений;
исследовать:
задачу (наличие или отсутствие решения, наличие нескольких решений);
читать:
информацию, представленную на графике;
решать учебные и практические задачи:
• вычислять периметр и площадь нестандартной прямоугольной фигуры;
• исследовать предметы окружающего мира, сопоставлять их с моделями пространственных геометрических фигур;
• прогнозировать результаты вычислений;
• читать и записывать любое многозначное число в пределах класса миллиардов;
• измерять длину, массу, площадь с указанной точностью;
• сравнивать углы способом наложения, используя модели.
II. СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА:
На реализацию программы по математике в федеральном базисном учебном плане предусмотрено 540 часов (4 часа в неделю в 1-4 классах).
1 класс 2 класс 3 класс 4 класс
132 ч 136 ч 136 ч 136 ч
1 класс
Программа рассчитана на 132 часа в год (4 часа в неделю) 33 рабочих недели.
В программе курса «Математика» выделены следующие темы: первоначальные представления о множествах предметов, отношения между предметами и между множествами предметов, число и счёт, арифметические действия, свойства сложения и вычитания, таблица сложения в пределах 10, таблица сложения однозначных чисел в пределах 20, осевая симметрия, практические работы.
1. Первоначальные представления о множествах предметов (6 ч)
Сходство и различие предметов. Предметы, обладающие или не обладающие данным свойством. Понятия какой-нибудь, каждый, все, не все, некоторые. Форма предмета.
2. Отношения между предметами и множествами предметов (6 ч)
Взаимное расположение предметов в пространстве и на плоскости. Соотношения размеров предметов. Понятия больше, меньше, таких же размеров, выше, ниже, длиннее, короче. Равночисленные множества.
3. Число и счет (50 ч)
Число и цифра. Названия и последовательность натуральных чисел от 1 до 20. Шкала линейки, микрокалькулятор. Запись чисел от 1 до 20 цифрами. Число и цифра 0. Сравнение чисел.
4. Свойства арифметических действий (12 ч)
Свойство сложения. Перестановка чисел при сложении. Сложение с нулем. Свойства вычитания.
Текстовая арифметическая задача. Условие и вопрос задачи. Запись решения и ответа.
5. Таблица сложения в пределах 10 (32 ч)
Табличные случаи прибавления и вычитания 1, 2, 3 и 4. Приемы вычислений.
6. Таблица сложения однозначных чисел в пределах 20 (16 ч)
Прибавление однозначного числа к 10. Табличные случаи сложения и вычитания 2, 3, 4, 5 и 6.
Числовые выражения со скобками. Сравнение чисел. Графы отношений. Правило сравнения.
Решение текстовых задач на нахождение числа, большего или меньшего данного числа на несколько единиц. Запись решения задач в 2 действия.
Прибавление 7, 8 и 9.
Арифметическая операция, обратная данной.
Вычитание 7, 8 и 9.
7. Осевая симметрия (8 ч)
Отображение фигур в зеркале. Ось симметрии. Пары симметричных точек, отрезков, многоугольников.
Резерв (2 ч)
2 класс
Программа курса математики 2 класса по федеральному базисному плану рассчитана на 4 часа в неделю, 34 рабочие недели, всего 136 часов.
Раздел 1: Элементы арифметики
Сложение и вычитание в пределах 100
Чтение и запись двузначных чисел цифрами.
Числовой луч. Сравнение чисел с использованием числового луча. Практические слоя сложения и вычитания двузначных чисел (двузначных и однозначных чисел).
Поразрядное сложение и вычитание двузначных чисел.
Таблица умножения однозначных чисел
Табличное умножение чисел и соответствующие случаи деления. Доля числа. Нахождение одной или нескольких долей данного числа. Умножение и деление с 0 и 1. Свойства умножения: умножать числа можно в любом порядке. Отношения «меньше в ...» и «больше в …». Решение задач на увеличение или уменьшение числа в несколько раз.
Раздел 2: Выражения
Названия компонентов действий сложения, вычитания, умножения и деления. Числовое выражение и его значение. Числовые выражения, содержащие скобки, нахождение значений числовых выражений. Составление числовых выражений.
Раздел 3: Величины
Единица длины метр и ее обозначение. Соотношения между единицами длины (1 м = 100 см, 1дм = 10 см, 1 м = 10 дм). Сведения из истории математики: старинные русские меры длины вершок, аршин, пядь, маховая и косая сажень) и массы (пуд).
Периметр многоугольника и его вычисление.
Правило вычисления площади прямоугольника (квадрата). Практические способы нахождения площадей фигур. Единицы площади: квадратный дециметр, квадратный сантиметр, квадратный метр и их обозначения (дм2, см2, м2).
Раздел 4: Геометрические понятия
Луч, его изображение и обозначение. Принадлежность точки лучу.
Взаимное расположение на плоскости лучей и отрезков.
Многоугольник и его элементы: вершины, стороны, углы.
Окружность; радиус и центр окружности. Построение окружности с помощью циркуля. Взаимное расположение фигур на плоскости.
Угол. Прямой и непрямой углы.
Прямоугольник (квадрат). Свойства противоположных сторон и диагоналей прямоугольника. Практические работы. Определение вида угла (прямой, непрямой), нахождение прямоугольника среди данных четырехугольников с помощью модели прямого угла.
Повторение
Резерв
3 класс
Программа курса математики 3 класса по федеральному базисному плану рассчитана на 4 часа в неделю, 34 рабочие недели, всего 136 часов.
Тысяча
Чтение и запись цифрами чисел от 100 до 1000.
Сведения из истории математики: как появились числа, чем занимается арифметика.
Сравнение чисел. Запись результатов сравнения с помощью знаков < и > .
Сложение и вычитание в пределах 1000.
Устные и письменные приёмы сложения и вычитания.
Сочетательное свойство сложения и умножения.
Упрощение выражений (освобождение выражений от «лишних» скобок).
Порядок выполнения действий в выражениях, записанных без скобок, содержащих действия: а) только одной ступени; б) разных ступеней. Правило порядка выполнения действий в выражениях, содержащих одну или несколько пар скобок.
Числовые равенства и неравенства.
Чтение и запись числовых равенств и неравенств. Свойства числовых равенств.
Решение составных арифметических задач в три действия.
Умножение и деление на однозначное число в пределах 1000
Умножение суммы на число (распределительное свойство умножения относительно сложения).
Умножение и деление на 10, 100.
Умножение числа, запись которого оканчивается нулём, на однозначное число. Умножение двух- и трёхзначного числа на однозначное число.
Нахождение однозначного частного.
Деление с остатком.
Деление на однозначное число.
Нахождение неизвестных компонентов арифметических действий.
Умножение и деление на двузначное число в пределах 1000
Умножение вида 23 . 40.
Умножение и деление на двузначное число.
Величины
Единицы длины километр и миллиметр и их обозначения: км, мм.
Умножение и деление на двузначное число длины: 1 км = 1000м, 1 см = 10 мм.
Вычисление длины ломаной.
Масса и её единицы: килограмм, грамм. Обозначения: кг, г. Соотношения: 1 кг = 1000 г.
Вместимость и её единица литр. Обозначение: л.
Сведения из истории математики: старинные русские единицы величин: морская миля, верста, пуд, фунт, ведро, бочка.
Время и его единицы: час, минута, секунда, сутки, неделя, год, век. Обозначения: ч, мин., с.
Соотношения между единицами времени: 1 час = 60 мин, 1 мин = 60 с, 1 сутки = 24 ч, 1 век = 100 лет, 1 год = 12 месяцев.
Сведения из истории математики: история возникновения месяцев года.
Решение арифметических задач, содержащие разнообразные зависимости между величинами.
Алгебраическая пропедевтика
Буквенные выражения. Вычисление значений буквенных выражений при заданных значениях этих букв.
Логические понятия
Примеры верных и неверных высказываний.
Геометрические понятия.
Ломаная линия. Вершины и звенья ломаной. Замкнутая и незамкнутая ломаная. Построение ломаной.
Деление окружности на 6 одинаковых частей с помощью циркуля.
Прямая. Принадлежность точки прямой. Проведение прямой через одну и через две точки.
Взаимное расположение на плоскости отрезков, лучей, прямых.
4 класс
Программа курса математики 4 класса по федеральному базисному плану рассчитана на 4 часа в неделю, 34 рабочие недели, всего 136 часов.
Элементы арифметики (67ч)
Множество целых неотрицательных чисел – 13 часов.
Многозначное число; классы и разряды многозначного числа. Десятичная система записи чисел. Чтение и запись многозначных чисел.
Сведения из истории математики. Римские цифры: I, V, X, L, C, D, М; запись дат римскими цифрам; примеры записи чисел римскими цифрами.1
Свойства арифметических действий.
Арифметические действия с многозначными числами - 54 часа.
Устные и письменные приемы сложения и вычитания многозначных чисел.
Умножение и деление на однозначное число, на двузначное и трёхзначное число.
Простейшие устные вычисления.
Решение арифметических задач разных видов, требующих выполнения 3-4 вычислений.
Величины и их измерение (32 ч)
Единицы массы: тонна и центнер. Обозначение: т, ц. Соотношение: 1 т = 10 ц, 1 т = 1000 кг, 1 ц = 100 кг. Скорость равномерного прямолинейного движения и её единицы. Обозначения: км/ч, м/с, м/мин. Решение задач на движение.
Точные и приближённые значения величины (с недостатком, с избытком). Измерения длины, массы, времени, площади с заданной точностью.
Алгебраическая пропедевтика (17 ч)
Координатный угол. Простейшие графики. Диаграммы. Таблицы.
Равенства с буквой. Нахождение неизвестного числа, обозначенного буквой.
Логические понятия (10 ч)
Высказывания.
Высказывание и его значение (истина, ложь). Составление высказываний и нахождение их значений.
Решение задач на перебор вариантов.
Геометрические понятия (10 ч)
Многогранник. Вершина, ребра и грани многогранника.
Построение прямоугольников. Взаимное расположение точек, отрезков, лучей, прямых, многоугольников, окружностей.
Треугольники и их виды.
Виды углов. Виды треугольников в зависимости от вида углов (остроугольные, прямоугольные, тупоугольные).
Виды треугольников в зависимости от длины сторон (разносторонние, равнобедренные, равносторонние).
Практические работы. Ознакомление с моделями многогранников: показ и пересчитывание вершин, ребер и граней многогранника. Склеивание моделей многогранников по их разверткам. Сопоставление фигур и разверток: выбор фигуры, имеющей соответствующую развертку, проверка правильности выбора. Сравнение углов наложением.
Формы организации занятий
Программа предусматривает проведение традиционных уроков, уроков в нетрадиционной форме (экскурсий, театрализаций, путешествий) и т.п. На уроках используется фронтальная, групповая, индивидуальная работа, работа в парах. Основной формой общения учителя и учащихся, учащихся друг с другом является учебный диалог.
Формы, вопросы контроля и учета достижений
Основными формами текущего контроля являются: самоконтроль; взаимоконтроль; устный опрос; математический диктант; текущий, тематический контроль.
В конце учебного года проводится итоговая контрольная работа, контрольная работа в форме тестирования и комплексная работа на межпредметной основе.
Обязательные формы и методы контроля
Иные формы учета достижений
Текущая аттестация Итоговая аттестация Урочная деятельность Внеурочная деятельность
- устный опрос
-самостоятельная работа
- математические диктанты
- тестовые задания
- графическая работа - диагностическая работа
- контрольная работа
- анализ динамики текущей успеваемости
- участие в интеллектуальных играх «Кенгуру», «ПОНИ» и т.д.
- активность в проектах и программах внеурочной деятельности
Контрольно-измерительные материалы соответствуют структуре рабочей программы и адекватны требованиям уровня подготовки обучающихся.
Текущие контрольные работы проводятся после окончания крупных тем программы. По результатам текущего контроля выявляется степень усвоения только что изученного материала и производится коррекция дальнейшего процесса обучения.
Итоговые контрольные работы проводятся за истекший период работы (четверть, год). Их цель – проверка выполнения требований программы. В содержание итоговых контрольных работ входят задания, знакомые детям по упражнениям учебника, проверяются лишь те умения и навыки, которые хорошо отработаны. Итоговые контрольные работы проводятся 4 раза в год (1, 2, 3 учебные четверти и за год).
Комплексная контрольная работа на межпредметной основе проводится в конце года.
Скачать Рабочая программа по математике для учащихся 1-4 классов по программе "Начальная школа 21 века"